首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1524篇
  免费   529篇
  国内免费   148篇
测绘学   12篇
大气科学   8篇
地球物理   1193篇
地质学   859篇
海洋学   64篇
综合类   28篇
自然地理   37篇
  2023年   9篇
  2022年   30篇
  2021年   36篇
  2020年   43篇
  2019年   73篇
  2018年   84篇
  2017年   76篇
  2016年   105篇
  2015年   78篇
  2014年   117篇
  2013年   135篇
  2012年   69篇
  2011年   104篇
  2010年   47篇
  2009年   116篇
  2008年   106篇
  2007年   98篇
  2006年   87篇
  2005年   65篇
  2004年   71篇
  2003年   67篇
  2002年   52篇
  2001年   60篇
  2000年   48篇
  1999年   45篇
  1998年   44篇
  1997年   36篇
  1996年   47篇
  1995年   49篇
  1994年   44篇
  1993年   36篇
  1992年   22篇
  1991年   20篇
  1990年   12篇
  1989年   7篇
  1988年   16篇
  1987年   7篇
  1986年   7篇
  1984年   10篇
  1983年   2篇
  1981年   1篇
  1979年   12篇
  1978年   5篇
  1977年   2篇
  1954年   1篇
排序方式: 共有2201条查询结果,搜索用时 531 毫秒
61.
The most significant damage on highway bridges during the recent earthquakes in Turkey (Kocaeli and Duzce earthquakes) and Taiwan (Chi–Chi earthquake) was the result of fault ruptures traversing transportation infrastructure. This phenomenon and its consequences accentuate the need to examine surface rupture hazards and to identify those areas at risk. This understanding can help to develop remedial measures for both structural and geotechnical engineering. For that purpose, damage to highway bridges during the recent events was reviewed. The total collapse of the highway overpass in Arifiye, during the Kocaeli earthquake, was investigated. The major problems under consideration (in Arifiye) were: (i) dislodging of the bridge spans, and consequently, the total separation of the reinforced concrete girders from the piers; and (ii) the stability of a mechanically stabilized earth wall (MSEW) system under extreme loading conditions. The results of the structural and geotechnical investigations presented herein can be taken in consideration to improve transportation infrastructure against surface rupture hazards.  相似文献   
62.
Image processing of 2D resistivity data for imaging faults   总被引:6,自引:0,他引:6  
A methodology to locate automatically limits or boundaries between different geological bodies in 2D electrical tomography is proposed, using a crest line extraction process in gradient images. This method is applied on several synthetic models and on field data set acquired on three experimental sites during the European project PALEOSIS where trenches were dug. The results presented in this work are valid for electrical tomographies data collected with a Wenner-alpha array and computed with an l1 norm (blocky inversion) as optimization method. For the synthetic cases, three geometric contexts are modelled: a vertical and a dipping fault juxtaposing two different geological formations and a step-like structure. A superficial layer can cover each geological structure. In these three situations, the method locates the synthetic faults and layer boundaries, and determines fault displacement but with several limitations. The estimated fault positions correlate exactly with the synthetic ones if a conductive (or no superficial) layer overlies the studied structure. When a resistive layer with a thickness of 6 m covers the model, faults are positioned with a maximum error of 1 m. Moreover, when a resistive and/or a thick top layer is present, the resolution significantly decreases for the fault displacement estimation (error up to 150%). The tests with the synthetic models for surveys using the Wenner-alpha array indicate that the proposed methodology is best suited to vertical and horizontal contacts. Application of the methodology to real data sets shows that a lateral resistivity contrast of 1:5–1:10 leads to exact faults location. A fault contact with a resistivity contrast of 1:0.75 and overlaid by a resistive layer with a thickness of 1 m gives an error location ranging from 1 to 3 m. Moreover, no result is obtained for a contact with very low contrasts (1:0.85) overlaid by a resistive soil. The method shows poor results when vertical gradients are greater than horizontal ones. This kind of image processing technique should be systematically used for improving the objectiveness of tomography interpretation when looking for limits between geological objects.  相似文献   
63.
Microcracks in the Cretaceous Ryoke-type granite in Japan were investigated by using deep drilling core samples collected in the Mizunami Underground Research Project of the Japan Nuclear Cycle Development Institute (JNC). The granite body suffered brittle deformation associated with Tertiary thrust movement. Based on core-scale and microscopic deformation features, the drill core from a depth of 300 to 700 m is divided into four domains, i.e. (A) undeformed granite, (B) granite intruded by cataclastic seams, (C) fractured granite in the fault damage zone, and (D) foliated cataclasite at the fault center. To characterize microcrack geometries in each domain, we employed the impregnation method using a low-viscous acrylic resin doped with fluorescent agents and captured the microcrack images by confocal laser scanning microscopy (CLSM). The CLSM image in the fault damage zone revealed anisotropic development of microcrack networks related to the fault movement. Both CLSM observation and porosity measurements reveal a drastic increase of micro-pores in the foliated cataclasite, possibly caused by fragmentation, and granulation and crack sealing in the fault zone.  相似文献   
64.
Field structural and SPOT image analyses document the kinematic framework enhancing transfer of strike-slip partitioned motion from along the backstop to the interior of the Zagros fold-and-thrust belt in a context of plate convergence slight obliquity. Transfer occurs by slip on the north-trending right-lateral Kazerun Fault System (KFS) that connects to the Main Recent Fault, a major northwest-trending dextral fault partitioning oblique convergence at the rear of the belt. The KFS formed by three fault zones ended by bent orogen-parallel thrusts allows slip from along the Main Recent Fault to become distributed by transfer to longitudinal thrusts and folds. To cite this article: C. Authemayou et al., C. R. Geoscience 337 (2005).  相似文献   
65.
This paper proposes a novel approach to analyze and design the formation keeping control protocols for multiple underwater vehicles in the presence of communication faults and possible uncertainties. First, we formulate the considered vehicle model as the Port-controlled Hamiltonian form, and introduce the spring-damping system based formation control. Next, the dynamics of multiple underwater vehicles under uncertain relative information is reformulated as a network of Lur’e systems. Moreover, the agents under unknown disturbances generated by an external system are considered, where the internal model is applied to tackle the uncertainties, which still can be regulated as the Lur’e systems. In each case, the formation control is derived from solving LMI problems. Finally, a numerical example is introduced to illustrate the effectiveness of the proposed theoretical approach.  相似文献   
66.
We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone.  相似文献   
67.
The Simplon Fault Zone is a late-collisional low-angle normal fault (LANF) of the Western Alps. The hanging wall shows evidence of brittle deformation only, while the footwall is characterized by a c. 1 km-thick shear zone (the Simplon Fault Zone), which continuously evolved, during exhumation and cooling, from amphibolite facies conditions to brittle-cataclastic deformations. Due to progressive localization of the active section of the shear zone, the thermal-rheological evolution of the footwall resulted in a layered structure, with higher temperature mylonites preserved at the periphery of the shear zone, and cataclasites occurring at the core (indicated as the Simplon Line). In order to investigate the weakness of the Simplon Line, we studied the evolution of brittle/cataclastic fault rocks, from nucleation to the most mature ones. Cataclasites are superposed on greenschist facies mylonites, and their nucleation can be studied at the periphery of the brittle fault zone. This is characterized by fractures, micro-faults and foliated ultracataclasite seams that develop along the mylonitic SCC′ fabric, exploiting the weak phases mainly represented by muscovite and chlorite. Approaching the fault core, both the thickness and frequency of cataclasite horizons increase, and, as their thickness increases, they become less and less foliated. The fault core itself is represented by a thicker non-foliated cataclasite horizon. No Andersonian faults or fractures can be found in the footwall damage zone and core zone, whilst they are present in the hanging wall and in the footwall further from the fault. Applying a stress model based on slip tendency, we have been able to calculate that the friction coefficient of the Simplon Line cataclasites was <0.25, hence this fault zone is absolutely weak. In contrast with other fault zones, the weakening effect of fluids was of secondary importance, since they accessed the fault zone only after an interconnected fracture network developed exploiting the cataclasite network.  相似文献   
68.
The geometry of a fault zone exerts a major control on earthquake rupture processes and source parameters. Observations previously compiled from multiple faults suggest that fault surface shape evolves with displacement, but the specific processes driving the evolution of fault geometry within a single fault zone are not well understood. Here, we characterize the deformation history and geometry of an extraordinarily well-exposed fault using maps of cross-sectional exposures constructed with the Structure from Motion photogrammetric method. The La Quinta Fault, located in southern California, experienced at least three phases of deformation. Multiple layers of ultracataclasite formed during the most recent phase. Crosscutting relations between the layers define the evolution of the structures and demonstrate that new layers formed successively during the deformation history. Wear processes such as grain plucking from one layer into a younger layer and truncation of asperities at layer edges indicate that the layers were slip zones and the contacts between them slip surfaces. Slip surfaces that were not reactivated or modified after they were abandoned exhibit self-affine geometry, preserving the fault roughness from different stages of faulting. Roughness varies little between surfaces, except the last slip zone to form in the fault, which is the smoothest. This layer contains a distinct mineral assemblage, indicating that the composition of the fault rock exerts a control on roughness. In contrast, the similar roughness of the older slip zones, which have comparable mineralogy but clearly crosscut one another, suggests that as the fault matured the roughness of the active slip surface stayed approximately constant. Wear processes affected these layers, so for roughness to stay constant the roughening and smoothing effects of fault slip must have been approximately balanced. These observations suggest fault surface evolution occurs by nucleation of new surfaces and wear by competing smoothing and re-roughening processes.  相似文献   
69.
Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°–20°) and at high angles in clay-rich layers (θi = 45°–86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.  相似文献   
70.
Hydrothermal ore deposits are typically characterised by footprints of zoned mineral assemblages that extend far beyond the size of the orebody. Understanding the mineral assemblages and spatial extent of these hydrothermal footprints is crucial for successful exploration, but is commonly hindered by the impact of regolith processes on the Earth's surface. Hyperspectral drill core (HyLogger?-3) data were used to characterise alteration mineralogy at the Mt Olympus gold deposit located 35 km southeast of Paraburdoo along the Nanjilgardy Fault within the northern margin of the Ashburton Basin in Western Australia. Mineralogy interpreted from hyperspectral data over the visible to shortwave (400–2500 nm) and thermal (6000–14500 nm) infrared wavelength ranges was validated with X-ray diffraction and geochemical analyses. Spaceborne multispectral (ASTER) and airborne geophysical (airborne electromagnetic, AEM) data were evaluated for mapping mineral footprints at the surface and sub-surface. At the deposit scale, mineral alteration patterns were identified by comparing the most abundant mineral groups detected in the HyLogger data against lithology logging and gold assays. Potential hydrothermal alteration phases included Na/K-alunite, kaolin phases (kaolinite, dickite), pyrophyllite, white mica, chlorite and quartz, representing low-T alteration of earlier greenschist metamorphosed sediments. The respective zoned mineral footprints varied depending on the type of sedimentary host rock. Siltstones were mainly characterised by widespread white-mica alteration with proximal kaolinite alteration or quartz veining. Sandstones showed (1) distal white mica, intermediate dickite, and proximal alunite + kaolinite or (2) widespread white-mica alteration with associated intervals of kaolinite. In both, sandstones and siltstones, chlorite was distal to gold mineralisation. Conglomerates showed distal kaolinite/dickite and proximal white-mica/dickite alteration. Three-dimensional visualisation of the gold distribution and spatially associated alteration patterns around Mt Olympus revealed three distinct categories: (1) several irregular, poddy, SE-plunging zones of >0.5 ppm gold intersected by the Zoe Fault; (2) sulfate alteration proximal to mineralisation, particularly on the northern side of the Mt Olympus open pit; and (3) varying AlIVAlVISiIV–1(Mg,Fe)VI–1 composition of white micas with proximity to gold mineralisation. Chlorite that developed during regional metamorphic or later hydrothermal alteration occurs distal to gold mineralisation. ASTER mineral mapping products, such as the MgOH Group Content used to map chlorite (±white mica) assemblages, showed evidence of correlation to mapped, local structural features and unknown structural or lithological contacts as indicated by inversion modelling of AEM data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号